yosys-master
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
BigUnsigned.cc
Go to the documentation of this file.
1 #include "BigUnsigned.hh"
2 
3 // Memory management definitions have moved to the bottom of NumberlikeArray.hh.
4 
5 // The templates used by these constructors and converters are at the bottom of
6 // BigUnsigned.hh.
7 
8 BigUnsigned::BigUnsigned(unsigned long x) { initFromPrimitive (x); }
10 BigUnsigned::BigUnsigned(unsigned short x) { initFromPrimitive (x); }
14 
15 unsigned long BigUnsigned::toUnsignedLong () const { return convertToPrimitive <unsigned long >(); }
16 unsigned int BigUnsigned::toUnsignedInt () const { return convertToPrimitive <unsigned int >(); }
17 unsigned short BigUnsigned::toUnsignedShort() const { return convertToPrimitive <unsigned short>(); }
18 long BigUnsigned::toLong () const { return convertToSignedPrimitive< long >(); }
19 int BigUnsigned::toInt () const { return convertToSignedPrimitive< int >(); }
20 short BigUnsigned::toShort () const { return convertToSignedPrimitive< short>(); }
21 
22 // BIT/BLOCK ACCESSORS
23 
24 void BigUnsigned::setBlock(Index i, Blk newBlock) {
25  if (newBlock == 0) {
26  if (i < len) {
27  blk[i] = 0;
29  }
30  // If i >= len, no effect.
31  } else {
32  if (i >= len) {
33  // The nonzero block extends the number.
34  allocateAndCopy(i+1);
35  // Zero any added blocks that we aren't setting.
36  for (Index j = len; j < i; j++)
37  blk[j] = 0;
38  len = i+1;
39  }
40  blk[i] = newBlock;
41  }
42 }
43 
44 /* Evidently the compiler wants BigUnsigned:: on the return type because, at
45  * that point, it hasn't yet parsed the BigUnsigned:: on the name to get the
46  * proper scope. */
48  if (isZero())
49  return 0;
50  else {
51  Blk leftmostBlock = getBlock(len - 1);
52  Index leftmostBlockLen = 0;
53  while (leftmostBlock != 0) {
54  leftmostBlock >>= 1;
55  leftmostBlockLen++;
56  }
57  return leftmostBlockLen + (len - 1) * N;
58  }
59 }
60 
61 void BigUnsigned::setBit(Index bi, bool newBit) {
62  Index blockI = bi / N;
63  Blk block = getBlock(blockI), mask = Blk(1) << (bi % N);
64  block = newBit ? (block | mask) : (block & ~mask);
65  setBlock(blockI, block);
66 }
67 
68 // COMPARISON
70  // A bigger length implies a bigger number.
71  if (len < x.len)
72  return less;
73  else if (len > x.len)
74  return greater;
75  else {
76  // Compare blocks one by one from left to right.
77  Index i = len;
78  while (i > 0) {
79  i--;
80  if (blk[i] == x.blk[i])
81  continue;
82  else if (blk[i] > x.blk[i])
83  return greater;
84  else
85  return less;
86  }
87  // If no blocks differed, the numbers are equal.
88  return equal;
89  }
90 }
91 
92 // COPY-LESS OPERATIONS
93 
94 /*
95  * On most calls to copy-less operations, it's safe to read the inputs little by
96  * little and write the outputs little by little. However, if one of the
97  * inputs is coming from the same variable into which the output is to be
98  * stored (an "aliased" call), we risk overwriting the input before we read it.
99  * In this case, we first compute the result into a temporary BigUnsigned
100  * variable and then copy it into the requested output variable *this.
101  * Each put-here operation uses the DTRT_ALIASED macro (Do The Right Thing on
102  * aliased calls) to generate code for this check.
103  *
104  * I adopted this approach on 2007.02.13 (see Assignment Operators in
105  * BigUnsigned.hh). Before then, put-here operations rejected aliased calls
106  * with an exception. I think doing the right thing is better.
107  *
108  * Some of the put-here operations can probably handle aliased calls safely
109  * without the extra copy because (for example) they process blocks strictly
110  * right-to-left. At some point I might determine which ones don't need the
111  * copy, but my reasoning would need to be verified very carefully. For now
112  * I'll leave in the copy.
113  */
114 #define DTRT_ALIASED(cond, op) \
115  if (cond) { \
116  BigUnsigned tmpThis; \
117  tmpThis.op; \
118  *this = tmpThis; \
119  return; \
120  }
121 
122 
123 
124 void BigUnsigned::add(const BigUnsigned &a, const BigUnsigned &b) {
125  DTRT_ALIASED(this == &a || this == &b, add(a, b));
126  // If one argument is zero, copy the other.
127  if (a.len == 0) {
128  operator =(b);
129  return;
130  } else if (b.len == 0) {
131  operator =(a);
132  return;
133  }
134  // Some variables...
135  // Carries in and out of an addition stage
136  bool carryIn, carryOut;
137  Blk temp;
138  Index i;
139  // a2 points to the longer input, b2 points to the shorter
140  const BigUnsigned *a2, *b2;
141  if (a.len >= b.len) {
142  a2 = &a;
143  b2 = &b;
144  } else {
145  a2 = &b;
146  b2 = &a;
147  }
148  // Set prelimiary length and make room in this BigUnsigned
149  len = a2->len + 1;
150  allocate(len);
151  // For each block index that is present in both inputs...
152  for (i = 0, carryIn = false; i < b2->len; i++) {
153  // Add input blocks
154  temp = a2->blk[i] + b2->blk[i];
155  // If a rollover occurred, the result is less than either input.
156  // This test is used many times in the BigUnsigned code.
157  carryOut = (temp < a2->blk[i]);
158  // If a carry was input, handle it
159  if (carryIn) {
160  temp++;
161  carryOut |= (temp == 0);
162  }
163  blk[i] = temp; // Save the addition result
164  carryIn = carryOut; // Pass the carry along
165  }
166  // If there is a carry left over, increase blocks until
167  // one does not roll over.
168  for (; i < a2->len && carryIn; i++) {
169  temp = a2->blk[i] + 1;
170  carryIn = (temp == 0);
171  blk[i] = temp;
172  }
173  // If the carry was resolved but the larger number
174  // still has blocks, copy them over.
175  for (; i < a2->len; i++)
176  blk[i] = a2->blk[i];
177  // Set the extra block if there's still a carry, decrease length otherwise
178  if (carryIn)
179  blk[i] = 1;
180  else
181  len--;
182 }
183 
185  DTRT_ALIASED(this == &a || this == &b, subtract(a, b));
186  if (b.len == 0) {
187  // If b is zero, copy a.
188  operator =(a);
189  return;
190  } else if (a.len < b.len)
191  // If a is shorter than b, the result is negative.
192  throw "BigUnsigned::subtract: "
193  "Negative result in unsigned calculation";
194  // Some variables...
195  bool borrowIn, borrowOut;
196  Blk temp;
197  Index i;
198  // Set preliminary length and make room
199  len = a.len;
200  allocate(len);
201  // For each block index that is present in both inputs...
202  for (i = 0, borrowIn = false; i < b.len; i++) {
203  temp = a.blk[i] - b.blk[i];
204  // If a reverse rollover occurred,
205  // the result is greater than the block from a.
206  borrowOut = (temp > a.blk[i]);
207  // Handle an incoming borrow
208  if (borrowIn) {
209  borrowOut |= (temp == 0);
210  temp--;
211  }
212  blk[i] = temp; // Save the subtraction result
213  borrowIn = borrowOut; // Pass the borrow along
214  }
215  // If there is a borrow left over, decrease blocks until
216  // one does not reverse rollover.
217  for (; i < a.len && borrowIn; i++) {
218  borrowIn = (a.blk[i] == 0);
219  blk[i] = a.blk[i] - 1;
220  }
221  /* If there's still a borrow, the result is negative.
222  * Throw an exception, but zero out this object so as to leave it in a
223  * predictable state. */
224  if (borrowIn) {
225  len = 0;
226  throw "BigUnsigned::subtract: Negative result in unsigned calculation";
227  } else
228  // Copy over the rest of the blocks
229  for (; i < a.len; i++)
230  blk[i] = a.blk[i];
231  // Zap leading zeros
232  zapLeadingZeros();
233 }
234 
235 /*
236  * About the multiplication and division algorithms:
237  *
238  * I searched unsucessfully for fast C++ built-in operations like the `b_0'
239  * and `c_0' Knuth describes in Section 4.3.1 of ``The Art of Computer
240  * Programming'' (replace `place' by `Blk'):
241  *
242  * ``b_0[:] multiplication of a one-place integer by another one-place
243  * integer, giving a two-place answer;
244  *
245  * ``c_0[:] division of a two-place integer by a one-place integer,
246  * provided that the quotient is a one-place integer, and yielding
247  * also a one-place remainder.''
248  *
249  * I also missed his note that ``[b]y adjusting the word size, if
250  * necessary, nearly all computers will have these three operations
251  * available'', so I gave up on trying to use algorithms similar to his.
252  * A future version of the library might include such algorithms; I
253  * would welcome contributions from others for this.
254  *
255  * I eventually decided to use bit-shifting algorithms. To multiply `a'
256  * and `b', we zero out the result. Then, for each `1' bit in `a', we
257  * shift `b' left the appropriate amount and add it to the result.
258  * Similarly, to divide `a' by `b', we shift `b' left varying amounts,
259  * repeatedly trying to subtract it from `a'. When we succeed, we note
260  * the fact by setting a bit in the quotient. While these algorithms
261  * have the same O(n^2) time complexity as Knuth's, the ``constant factor''
262  * is likely to be larger.
263  *
264  * Because I used these algorithms, which require single-block addition
265  * and subtraction rather than single-block multiplication and division,
266  * the innermost loops of all four routines are very similar. Study one
267  * of them and all will become clear.
268  */
269 
270 /*
271  * This is a little inline function used by both the multiplication
272  * routine and the division routine.
273  *
274  * `getShiftedBlock' returns the `x'th block of `num << y'.
275  * `y' may be anything from 0 to N - 1, and `x' may be anything from
276  * 0 to `num.len'.
277  *
278  * Two things contribute to this block:
279  *
280  * (1) The `N - y' low bits of `num.blk[x]', shifted `y' bits left.
281  *
282  * (2) The `y' high bits of `num.blk[x-1]', shifted `N - y' bits right.
283  *
284  * But we must be careful if `x == 0' or `x == num.len', in
285  * which case we should use 0 instead of (2) or (1), respectively.
286  *
287  * If `y == 0', then (2) contributes 0, as it should. However,
288  * in some computer environments, for a reason I cannot understand,
289  * `a >> b' means `a >> (b % N)'. This means `num.blk[x-1] >> (N - y)'
290  * will return `num.blk[x-1]' instead of the desired 0 when `y == 0';
291  * the test `y == 0' handles this case specially.
292  */
294  BigUnsigned::Index x, unsigned int y) {
295  BigUnsigned::Blk part1 = (x == 0 || y == 0) ? 0 : (num.blk[x - 1] >> (BigUnsigned::N - y));
296  BigUnsigned::Blk part2 = (x == num.len) ? 0 : (num.blk[x] << y);
297  return part1 | part2;
298 }
299 
301  DTRT_ALIASED(this == &a || this == &b, multiply(a, b));
302  // If either a or b is zero, set to zero.
303  if (a.len == 0 || b.len == 0) {
304  len = 0;
305  return;
306  }
307  /*
308  * Overall method:
309  *
310  * Set this = 0.
311  * For each 1-bit of `a' (say the `i2'th bit of block `i'):
312  * Add `b << (i blocks and i2 bits)' to *this.
313  */
314  // Variables for the calculation
315  Index i, j, k;
316  unsigned int i2;
317  Blk temp;
318  bool carryIn, carryOut;
319  // Set preliminary length and make room
320  len = a.len + b.len;
321  allocate(len);
322  // Zero out this object
323  for (i = 0; i < len; i++)
324  blk[i] = 0;
325  // For each block of the first number...
326  for (i = 0; i < a.len; i++) {
327  // For each 1-bit of that block...
328  for (i2 = 0; i2 < N; i2++) {
329  if ((a.blk[i] & (Blk(1) << i2)) == 0)
330  continue;
331  /*
332  * Add b to this, shifted left i blocks and i2 bits.
333  * j is the index in b, and k = i + j is the index in this.
334  *
335  * `getShiftedBlock', a short inline function defined above,
336  * is now used for the bit handling. It replaces the more
337  * complex `bHigh' code, in which each run of the loop dealt
338  * immediately with the low bits and saved the high bits to
339  * be picked up next time. The last run of the loop used to
340  * leave leftover high bits, which were handled separately.
341  * Instead, this loop runs an additional time with j == b.len.
342  * These changes were made on 2005.01.11.
343  */
344  for (j = 0, k = i, carryIn = false; j <= b.len; j++, k++) {
345  /*
346  * The body of this loop is very similar to the body of the first loop
347  * in `add', except that this loop does a `+=' instead of a `+'.
348  */
349  temp = blk[k] + getShiftedBlock(b, j, i2);
350  carryOut = (temp < blk[k]);
351  if (carryIn) {
352  temp++;
353  carryOut |= (temp == 0);
354  }
355  blk[k] = temp;
356  carryIn = carryOut;
357  }
358  // No more extra iteration to deal with `bHigh'.
359  // Roll-over a carry as necessary.
360  for (; carryIn; k++) {
361  blk[k]++;
362  carryIn = (blk[k] == 0);
363  }
364  }
365  }
366  // Zap possible leading zero
367  if (blk[len - 1] == 0)
368  len--;
369 }
370 
371 /*
372  * DIVISION WITH REMAINDER
373  * This monstrous function mods *this by the given divisor b while storing the
374  * quotient in the given object q; at the end, *this contains the remainder.
375  * The seemingly bizarre pattern of inputs and outputs was chosen so that the
376  * function copies as little as possible (since it is implemented by repeated
377  * subtraction of multiples of b from *this).
378  *
379  * "modWithQuotient" might be a better name for this function, but I would
380  * rather not change the name now.
381  */
383  /* Defending against aliased calls is more complex than usual because we
384  * are writing to both *this and q.
385  *
386  * It would be silly to try to write quotient and remainder to the
387  * same variable. Rule that out right away. */
388  if (this == &q)
389  throw "BigUnsigned::divideWithRemainder: Cannot write quotient and remainder into the same variable";
390  /* Now *this and q are separate, so the only concern is that b might be
391  * aliased to one of them. If so, use a temporary copy of b. */
392  if (this == &b || &q == &b) {
393  BigUnsigned tmpB(b);
394  divideWithRemainder(tmpB, q);
395  return;
396  }
397 
398  /*
399  * Knuth's definition of mod (which this function uses) is somewhat
400  * different from the C++ definition of % in case of division by 0.
401  *
402  * We let a / 0 == 0 (it doesn't matter much) and a % 0 == a, no
403  * exceptions thrown. This allows us to preserve both Knuth's demand
404  * that a mod 0 == a and the useful property that
405  * (a / b) * b + (a % b) == a.
406  */
407  if (b.len == 0) {
408  q.len = 0;
409  return;
410  }
411 
412  /*
413  * If *this.len < b.len, then *this < b, and we can be sure that b doesn't go into
414  * *this at all. The quotient is 0 and *this is already the remainder (so leave it alone).
415  */
416  if (len < b.len) {
417  q.len = 0;
418  return;
419  }
420 
421  // At this point we know (*this).len >= b.len > 0. (Whew!)
422 
423  /*
424  * Overall method:
425  *
426  * For each appropriate i and i2, decreasing:
427  * Subtract (b << (i blocks and i2 bits)) from *this, storing the
428  * result in subtractBuf.
429  * If the subtraction succeeds with a nonnegative result:
430  * Turn on bit i2 of block i of the quotient q.
431  * Copy subtractBuf back into *this.
432  * Otherwise bit i2 of block i remains off, and *this is unchanged.
433  *
434  * Eventually q will contain the entire quotient, and *this will
435  * be left with the remainder.
436  *
437  * subtractBuf[x] corresponds to blk[x], not blk[x+i], since 2005.01.11.
438  * But on a single iteration, we don't touch the i lowest blocks of blk
439  * (and don't use those of subtractBuf) because these blocks are
440  * unaffected by the subtraction: we are subtracting
441  * (b << (i blocks and i2 bits)), which ends in at least `i' zero
442  * blocks. */
443  // Variables for the calculation
444  Index i, j, k;
445  unsigned int i2;
446  Blk temp;
447  bool borrowIn, borrowOut;
448 
449  /*
450  * Make sure we have an extra zero block just past the value.
451  *
452  * When we attempt a subtraction, we might shift `b' so
453  * its first block begins a few bits left of the dividend,
454  * and then we'll try to compare these extra bits with
455  * a nonexistent block to the left of the dividend. The
456  * extra zero block ensures sensible behavior; we need
457  * an extra block in `subtractBuf' for exactly the same reason.
458  */
459  Index origLen = len; // Save real length.
460  /* To avoid an out-of-bounds access in case of reallocation, allocate
461  * first and then increment the logical length. */
462  allocateAndCopy(len + 1);
463  len++;
464  blk[origLen] = 0; // Zero the added block.
465 
466  // subtractBuf holds part of the result of a subtraction; see above.
467  Blk *subtractBuf = new Blk[len];
468 
469  // Set preliminary length for quotient and make room
470  q.len = origLen - b.len + 1;
471  q.allocate(q.len);
472  // Zero out the quotient
473  for (i = 0; i < q.len; i++)
474  q.blk[i] = 0;
475 
476  // For each possible left-shift of b in blocks...
477  i = q.len;
478  while (i > 0) {
479  i--;
480  // For each possible left-shift of b in bits...
481  // (Remember, N is the number of bits in a Blk.)
482  q.blk[i] = 0;
483  i2 = N;
484  while (i2 > 0) {
485  i2--;
486  /*
487  * Subtract b, shifted left i blocks and i2 bits, from *this,
488  * and store the answer in subtractBuf. In the for loop, `k == i + j'.
489  *
490  * Compare this to the middle section of `multiply'. They
491  * are in many ways analogous. See especially the discussion
492  * of `getShiftedBlock'.
493  */
494  for (j = 0, k = i, borrowIn = false; j <= b.len; j++, k++) {
495  temp = blk[k] - getShiftedBlock(b, j, i2);
496  borrowOut = (temp > blk[k]);
497  if (borrowIn) {
498  borrowOut |= (temp == 0);
499  temp--;
500  }
501  // Since 2005.01.11, indices of `subtractBuf' directly match those of `blk', so use `k'.
502  subtractBuf[k] = temp;
503  borrowIn = borrowOut;
504  }
505  // No more extra iteration to deal with `bHigh'.
506  // Roll-over a borrow as necessary.
507  for (; k < origLen && borrowIn; k++) {
508  borrowIn = (blk[k] == 0);
509  subtractBuf[k] = blk[k] - 1;
510  }
511  /*
512  * If the subtraction was performed successfully (!borrowIn),
513  * set bit i2 in block i of the quotient.
514  *
515  * Then, copy the portion of subtractBuf filled by the subtraction
516  * back to *this. This portion starts with block i and ends--
517  * where? Not necessarily at block `i + b.len'! Well, we
518  * increased k every time we saved a block into subtractBuf, so
519  * the region of subtractBuf we copy is just [i, k).
520  */
521  if (!borrowIn) {
522  q.blk[i] |= (Blk(1) << i2);
523  while (k > i) {
524  k--;
525  blk[k] = subtractBuf[k];
526  }
527  }
528  }
529  }
530  // Zap possible leading zero in quotient
531  if (q.blk[q.len - 1] == 0)
532  q.len--;
533  // Zap any/all leading zeros in remainder
534  zapLeadingZeros();
535  // Deallocate subtractBuf.
536  // (Thanks to Brad Spencer for noticing my accidental omission of this!)
537  delete [] subtractBuf;
538 }
539 
540 /* BITWISE OPERATORS
541  * These are straightforward blockwise operations except that they differ in
542  * the output length and the necessity of zapLeadingZeros. */
543 
544 void BigUnsigned::bitAnd(const BigUnsigned &a, const BigUnsigned &b) {
545  DTRT_ALIASED(this == &a || this == &b, bitAnd(a, b));
546  // The bitwise & can't be longer than either operand.
547  len = (a.len >= b.len) ? b.len : a.len;
548  allocate(len);
549  Index i;
550  for (i = 0; i < len; i++)
551  blk[i] = a.blk[i] & b.blk[i];
552  zapLeadingZeros();
553 }
554 
555 void BigUnsigned::bitOr(const BigUnsigned &a, const BigUnsigned &b) {
556  DTRT_ALIASED(this == &a || this == &b, bitOr(a, b));
557  Index i;
558  const BigUnsigned *a2, *b2;
559  if (a.len >= b.len) {
560  a2 = &a;
561  b2 = &b;
562  } else {
563  a2 = &b;
564  b2 = &a;
565  }
566  allocate(a2->len);
567  for (i = 0; i < b2->len; i++)
568  blk[i] = a2->blk[i] | b2->blk[i];
569  for (; i < a2->len; i++)
570  blk[i] = a2->blk[i];
571  len = a2->len;
572  // Doesn't need zapLeadingZeros.
573 }
574 
575 void BigUnsigned::bitXor(const BigUnsigned &a, const BigUnsigned &b) {
576  DTRT_ALIASED(this == &a || this == &b, bitXor(a, b));
577  Index i;
578  const BigUnsigned *a2, *b2;
579  if (a.len >= b.len) {
580  a2 = &a;
581  b2 = &b;
582  } else {
583  a2 = &b;
584  b2 = &a;
585  }
586  allocate(a2->len);
587  for (i = 0; i < b2->len; i++)
588  blk[i] = a2->blk[i] ^ b2->blk[i];
589  for (; i < a2->len; i++)
590  blk[i] = a2->blk[i];
591  len = a2->len;
592  zapLeadingZeros();
593 }
594 
595 void BigUnsigned::bitShiftLeft(const BigUnsigned &a, int b) {
596  DTRT_ALIASED(this == &a, bitShiftLeft(a, b));
597  if (b < 0) {
598  if (b << 1 == 0)
599  throw "BigUnsigned::bitShiftLeft: "
600  "Pathological shift amount not implemented";
601  else {
602  bitShiftRight(a, -b);
603  return;
604  }
605  }
606  Index shiftBlocks = b / N;
607  unsigned int shiftBits = b % N;
608  // + 1: room for high bits nudged left into another block
609  len = a.len + shiftBlocks + 1;
610  allocate(len);
611  Index i, j;
612  for (i = 0; i < shiftBlocks; i++)
613  blk[i] = 0;
614  for (j = 0, i = shiftBlocks; j <= a.len; j++, i++)
615  blk[i] = getShiftedBlock(a, j, shiftBits);
616  // Zap possible leading zero
617  if (blk[len - 1] == 0)
618  len--;
619 }
620 
622  DTRT_ALIASED(this == &a, bitShiftRight(a, b));
623  if (b < 0) {
624  if (b << 1 == 0)
625  throw "BigUnsigned::bitShiftRight: "
626  "Pathological shift amount not implemented";
627  else {
628  bitShiftLeft(a, -b);
629  return;
630  }
631  }
632  // This calculation is wacky, but expressing the shift as a left bit shift
633  // within each block lets us use getShiftedBlock.
634  Index rightShiftBlocks = (b + N - 1) / N;
635  unsigned int leftShiftBits = N * rightShiftBlocks - b;
636  // Now (N * rightShiftBlocks - leftShiftBits) == b
637  // and 0 <= leftShiftBits < N.
638  if (rightShiftBlocks >= a.len + 1) {
639  // All of a is guaranteed to be shifted off, even considering the left
640  // bit shift.
641  len = 0;
642  return;
643  }
644  // Now we're allocating a positive amount.
645  // + 1: room for high bits nudged left into another block
646  len = a.len + 1 - rightShiftBlocks;
647  allocate(len);
648  Index i, j;
649  for (j = rightShiftBlocks, i = 0; j <= a.len; j++, i++)
650  blk[i] = getShiftedBlock(a, j, leftShiftBits);
651  // Zap possible leading zero
652  if (blk[len - 1] == 0)
653  len--;
654 }
655 
656 // INCREMENT/DECREMENT OPERATORS
657 
658 // Prefix increment
660  Index i;
661  bool carry = true;
662  for (i = 0; i < len && carry; i++) {
663  blk[i]++;
664  carry = (blk[i] == 0);
665  }
666  if (carry) {
667  // Allocate and then increase length, as in divideWithRemainder
668  allocateAndCopy(len + 1);
669  len++;
670  blk[i] = 1;
671  }
672 }
673 
674 // Postfix increment: same as prefix
676  operator ++();
677 }
678 
679 // Prefix decrement
681  if (len == 0)
682  throw "BigUnsigned::operator --(): Cannot decrement an unsigned zero";
683  Index i;
684  bool borrow = true;
685  for (i = 0; borrow; i++) {
686  borrow = (blk[i] == 0);
687  blk[i]--;
688  }
689  // Zap possible leading zero (there can only be one)
690  if (blk[len - 1] == 0)
691  len--;
692 }
693 
694 // Postfix decrement: same as prefix
696  operator --();
697 }
Index bitLength() const
Definition: BigUnsigned.cc:47
CmpRes compareTo(const BigUnsigned &x) const
Definition: BigUnsigned.cc:69
friend Blk getShiftedBlock(const BigUnsigned &num, Index x, unsigned int y)
Definition: BigUnsigned.cc:293
void bitOr(const BigUnsigned &a, const BigUnsigned &b)
Definition: BigUnsigned.cc:555
void setBlock(Index i, Blk newBlock)
Definition: BigUnsigned.cc:24
BigUnsigned::Blk getShiftedBlock(const BigUnsigned &num, BigUnsigned::Index x, unsigned int y)
Definition: BigUnsigned.cc:293
void divideWithRemainder(const BigUnsigned &b, BigUnsigned &q)
Definition: BigUnsigned.cc:382
#define DTRT_ALIASED(cond, op)
Definition: BigUnsigned.cc:114
void bitShiftLeft(const BigUnsigned &a, int b)
Definition: BigUnsigned.cc:595
unsigned int toUnsignedInt() const
Definition: BigUnsigned.cc:16
void initFromPrimitive(X x)
Definition: BigUnsigned.hh:356
void operator++()
Definition: BigUnsigned.cc:659
if(!(yy_init))
Definition: ilang_lexer.cc:846
void add(const BigUnsigned &a, const BigUnsigned &b)
Definition: BigUnsigned.cc:124
bool isZero() const
Definition: BigUnsigned.hh:97
void subtract(const BigUnsigned &a, const BigUnsigned &b)
Definition: BigUnsigned.cc:184
unsigned long toUnsignedLong() const
Definition: BigUnsigned.cc:15
while(1)
Definition: ilang_lexer.cc:872
NumberlikeArray< Blk >::Index Index
Definition: BigUnsigned.hh:22
static const unsigned int N
void initFromSignedPrimitive(X x)
Definition: BigUnsigned.hh:373
void setBit(Index bi, bool newBit)
Definition: BigUnsigned.cc:61
void operator--()
Definition: BigUnsigned.cc:680
unsigned long Blk
Definition: BigUnsigned.hh:20
short toShort() const
Definition: BigUnsigned.cc:20
void multiply(const BigUnsigned &a, const BigUnsigned &b)
Definition: BigUnsigned.cc:300
unsigned short toUnsignedShort() const
Definition: BigUnsigned.cc:17
void bitAnd(const BigUnsigned &a, const BigUnsigned &b)
Definition: BigUnsigned.cc:544
void operator=(const BigUnsigned &x)
Definition: BigUnsigned.hh:43
void zapLeadingZeros()
Definition: BigUnsigned.hh:30
void bitXor(const BigUnsigned &a, const BigUnsigned &b)
Definition: BigUnsigned.cc:575
Blk getBlock(Index i) const
Definition: BigUnsigned.hh:92
void bitShiftRight(const BigUnsigned &a, int b)
Definition: BigUnsigned.cc:621
long toLong() const
Definition: BigUnsigned.cc:18
int toInt() const
Definition: BigUnsigned.cc:19